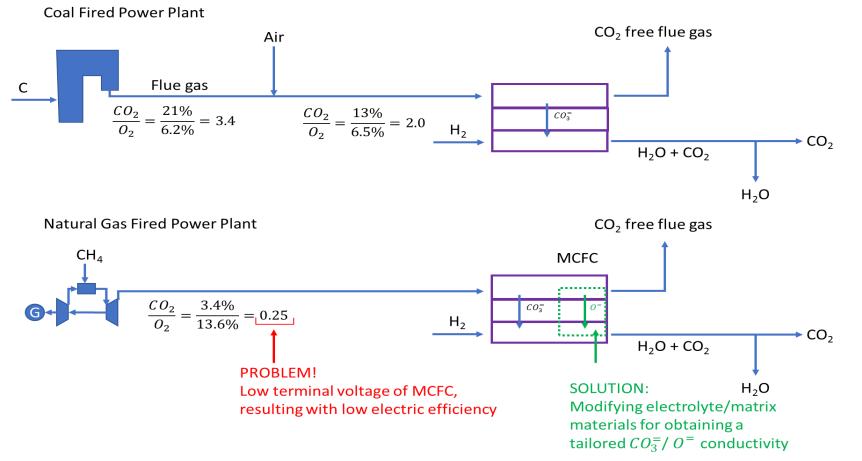


Modular system based on Molten Carbonate Fuel Cells with tailored composite membranes designed for specific flue gas compositions oriented into CCS integration with an industrial power plant

MOLCAR


Work Package 4

Industrial research of CCS installation with MCFC stacks

Warsaw University of Technology & Fuel Cell Poland sp. z o.o.

Topic and excellence

Work Package 4 • Flue gas composition

Table Typical composition of flue gas originatedfrom gas turbines

Major species	Typical concentration, % volume
N₂	6672
Oz	1218
CO2	15
H₂O	15

Table General Electric F-class engine (GE9371FB) exhaust gasand fuel composition

COMPONENT	Fuel, %vol	Flue gas
		composition, %vol
CH ₄	93.1	0
C ₂ H ₆	3.2	0
C ₃ H ₈	0.7	0
C ₄ H ₁₀	0.4	0
N ₂	1.6	0
CO ₂	1.0	3.9
H ₂ O	0	8.4
02	0	12.4
N ₂	0	74.4
Ar	0	0.9

Work Package 4

- Planned reseach activities
 - Verification of the MCFC operation with the various composition of flue gases
 - examination of the MCFC operation stability as the component of CCS installation
 - Testing scenarios
 - up to 3 short operating periods
 - up to 3 medium operation periods

Oriented into verification of the basic functionalities of the container installation

• 1 long operating periods – at least 1000 hours

Work Package 4

Goal: Long-term tests during operation lasting 120 – 1000 hours

- Task 4.1: Long-term studies of a pilot container installation with a MCFC stack
- Task 4.2: Research on the impact of exhaust gas composition on the efficiency of CO2 capture in the context of increased efficiency

Work Package 4

• Task 4.1: Long-term studies of a pilot container installation with a MCFC stack

Aim: collect following operational data:

- Temperatures at measured locations inside the stack
- Temperatures of external construction plates of the stack (exposed to large temperature difference)
- Temperatures of gas in inlet and flue gas outlet channels
- Pressure on the inlet and outlet to both anode and cathode
- Absolute fuel pressure
- Pressure drop between inlet and outlet in the anode and cathode channel
- Pressure drop in the main pipelines of the installation

Work Package 4

• Task 4.1: Long-term studies of a pilot container installation with a MCFC stack

Aim: collect following operational data:

- Fuel and air/flue gases composition controll
- Fuel and air/flue gases flow control
- Detailed control of the value of CO2 capture coefficient and decrease of concentration of CO2 at the cathode outlet
- Fuel and oxidized utilization coefficient
- Data acquisition for ex-post analysis in the resolution of 1 seconds (for steady states) and 0.1-0.2 seconds for transient states.

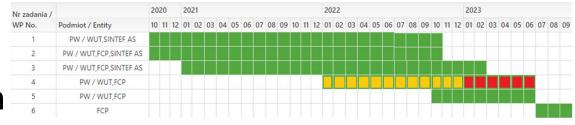
Work Package 4

Goal: Long-term tests during operation lasting 120 – 1000 hours

- Task 4.1: Long-term studies of a pilot container installation with a MCFC stack
- ➤Task 4.2: Research on the impact of exhaust gas composition on the efficiency of CO2 capture in the context of increased efficiency

Work Package 4

- Task 4.2: Research on the impact of exhaust gas composition on the efficiency of CO2 capture in the context of increased efficiency
- General analysis of facility cooperation with MCFC, including:
- Various amounts of gas turbine flue gas flow through cathode channel vs. Electricity generation efficiency
- Various amounts of gas turbine/boiler flue gas flow through cathode channel vs. CO2 generation by unit
- Effect of high/low amount of CO2 and O2 in gas turbine flue gas composition on MCFC effectiveness



Work Package 4 (01.2022 .. 06.2023) • Planned schedule of tasks realisation

Nr zadania / WP No. Podmio		202	20		202	21											202	22											202	23							
	Podmiot / Entity	10	11	12	01	02	03	04	05	06	07	08	09	10	11	12	01	02	03	04	05	06	c7	08	09	10	11	12	01	02	03	04	05	06	07	08	09
1	PW / WUT,SINTEF AS																																				
2	PW / WUT,FCP,SINTEF AS																																				
3	PW / WUT,FCP,SINTEF AS																																				
4	PW / WUT,FCP																																				
5	PW / WUT,FCP																							1													
6	FCP																																				

Work Package 4 Planned schedule of tasks implementation

- Preparation of infrastructure for container with MCFC unit for short mid long term tests (simultanously), insluding:
- Physical location preparation
- Technical gases (hydrogen, nitrogen, compressed air, flue gas composition) infrastructure organisation
- Test schedule preparation
- Gas delivery scheduling

Work Package 4 Planned schedule of tasks implementation

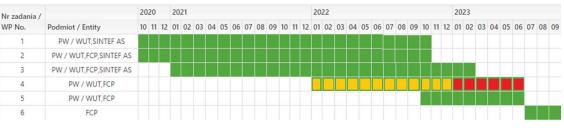
• 1st start-up of full installation aimed to formate 10kW MCFC stack

120h - 1st start-up of MCFC stack requires special conditions for removing polymers and reduce the anode electrode

10kW MCFC stack test under reference conditions

100h – 1st start-up under final procedure, investigation of MCFC stack on reference gases (H2 as fuel; 30%CO2, 15%O2, 55%N2)

Short time investigation of MCFC for CO2 separation from flue gases (starting 20.01.2023)


120..240h - investigation of MCFC stack with flue gases on cathode side, parameters stabilization and optimization, cool down – analysis of installation parameters during start-up, short time operation and cool down

Mid time investigation of full instalation (starting 06.02.2023)

480h - investigation of MCFC stack with flue gases on cathode side; feasibility assessment of BoP equipment for long perspective

• Long-term investigation of full instalation (starting 03.03.2023)

1000h - investigation of MCFC stack with flue gases on cathode side aiming to separate CO2 in long perspective; degradation test will be conducted for operating voltage and power; dynamic behavior under changing thermal-flow parameters will be studied; measuring of key performance indicators

